

New synthetic route for polymer-supported preparation of benzo[1,4]-diazepin-5-ones with three diversity positions

^aDepartment of Organic Chemistry, Institute of Molecular and Translational Medicine, Faculty of Science, Palacky University, 771 46 Olomouc, Czech Republic

^bCentre of the Region Hana for Biotechnological and Agricultural Research, Department of Growth Regulators, Faculty of Science, Palacky University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic ^cFarmak a.s., 771 17 Olomouc, Czech Republic

Introduction

Derivatives of 5-substituted-1,3-dihydro-benzo[e][1,4]diazepin-2ones I have been studied extensively due to their influence on a central nervous system (CNS). Some of these substances are commercially available drugs.¹ On the other hand, structurally isomeric 2-phenyl-3,4-dihydro-benzo[e][1,4]diazepin-5-ones II have been studied only rarely. For this reason, we focused on the development of the method of synthesis, preparation, isolation and biological testing of the target compounds with a structure II.²

Synthesis of target compounds

We present highly-efficient solid-phase synthesis of the final compounds 7 with three diversity position (Scheme 1).² It is based on the conversion of polymer supported amines (Figure 1) to α -aminoketones (Figure 2). After the cleavage of the *p*-Nosyl group, the corresponding α -aminoketones were acylated with various *o*-nitrobenzoic acids (Figure 3). Reduction of the nitro group followed by spontaneous on-resin ring closure gave the target immobilized substances.

Figure 2: List of haloketones tested for R² substitution

Scheme 1: Developed synthetic route leading to the target benzodiazepines^a

7{2,1,1}	-ۇон	*>-	-Ş-H	97	99	30
7{3,1,1}	-\$соон	*>-	-Ş-H	72	99	26
7{3,2,1}	-}	-{->-OCH3	-} - ⊦	93	99	47
7{3,3,1}	-ۇсоон		-Ş-H	88	99	33
7{3,4,1}	-ۇсоон		-ş-H	83	99	22
7{3,1,2}	-}соон	\bigcirc	-Ş-8-Br	85	99	24
7{3,1,3}	-ۇсоон	$\langle \rangle$	-Ş—7-0СН3	73	99	14
7{3,1,4}	-}соон	\bigcirc	-Ş-8-СН3	87	99	15
7{3,1,5}	-§соон	*>	Pyridine cycle	76	96	28
7{4,1,1}	_{	₹\	- <u></u> ξ-H	79	96	30
7{5,1,1}	-ўсомнрюруі	~~~	-Ş-H	96	99	26
7{6,1,1}	⊂}CONHbenzyl	$\mathbb{A}^{\mathbb{A}}$	-Ş-H	85	99	29
7{1,1,1}	-}~NH₂		-Ş-H	77	-	NI
7{1,2,1}	-ۇNH₂	-ई-Оснз	-Ş-H	78	-	NI
7{1,3,1}	-}		-Ş-H	63	_	NI
7{1,4,1}	-}		-Ş-H	58	_	NI

*Calculated from HPLC-UV traces (PDA 200-600 nm), NI = not isolated due to the decomposition during semiprep. HPLC isolation.

Conclusion

We have developed high-througput synthesis of 2-phenyl-3,4dihydro-benzo[e][1,4]diazepin-5-ones from commercially available

bromoketone, DIEA DMF, rt, 16 hrs; (iii) 2-mercaptoethanol, DBU, rt, 10 min; (iv) *o*nitrobenzoic acids, DIC, DMF, rt, 16 hrs; (v) $SnCl_2 \cdot 2H_2O$, DIEA, deoxygenated DMF, rt, 16 hrs (repeated); (vi) 50% TFA in DCM, rt, 30 min.

Figure 1: List of used immobilized amines $1\{R^1\}$

Wang resinPolONH2PolONH21{1} (R¹ = -CH2-CH2-NH2)1{2} (R¹ = -CH2-CH2-OH)1{3} (R¹ = -CH2-CH2-COOH)Rink amide resinPolHNH201{4} (R¹ = -CH2-CH2-CONH2)BAL resinNH2NH21{5} (R = propyl, R¹ = -CH2-CH2-CONHPr)1{6}(R = benzyl, R¹ = -CH2-CH2-CONHBn)

building blocks with polymer-supported α -aminoketones being the key intermediates. The solid-phase synthesis concept has been used in order to introduce the methodology applicable for the future preparation of chemical library and subsequent structure-activity relationship studies of the target substances **7**.

¹L.-H. Sternbach, *J. Med. Chem.* **1979**, *22(1)*, 1-7. ²V. Fulopova, T. Gucky, M. Grepl, M. Soural, *ACS Comb. Sci.* **2012**, *14(12)*, 651-656.

Acknowledgement

This research was supported by project CZ.1.07/2.2.00/28.0184 coming from European Social Fund. The infrastructural part of this project was promoted from Support the sustainability of the Institute of Molecular and Translational Medicine (project LO1304).