Synthesis of ribosylated derivatives of 3-hydroxyquinolin-4 (1H)-ones and study of their biological properties.

Marek Petráček, Jan Hlaváč

Department of Organic Chemistry, Faculty of Science PU, Tř. 17. listopadu 1192/12 771 46 Olomouc petracek@orgchem.upol.cz

3-hydroxyquinoline-4(1H)-ones (3-HQs) (3) are the substances with very promising anticancer activity ¹. The practical use of these substances is prevented by low solubility of these derivatives in water and low stability of the 3-HQs at physiological pH. The newly prepared derivatives with the ribose at nitrogen in position 1 solve the problem of solubility and stability. Recently developed conditions using Vorbrügen method of preparation is well applicable to an unsubstituted 2-phenyl-3HQs². Other derivatives of 3HQs do not give good yields or fail completely. We tried a new method of preparation of 3-HQs 5 ribosylated in position 1 by using 2-bromoribofuranose 2, prepared by bromination of o-acetylribose 1 (Scheme 1). This synthetic route is suitable for preparation of other derivatives with conversion max. 30%. That's why we went back to Vorbrügen method and improved the reaction - silylation. Using N, O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) as a silylating agent, it was possible to prepare various derivatives with conversion 70 - 85% (Scheme 2).

The reduced derivatives 6 are quite stable within the wide range of pH. Anticancer activity tested against A549, CCRF-CEM, CEM-DNR, HCT116, HCT116, HCT116, SSG2-TAX cell lines exhibited some very promising results (see Table 1 and 2).

Table 1. Results of anticancer activity of 2-phenyl-5,6,7,8-tetrahydro-3-HQ

	Cell lines										
NH ₂	CCRF- CEM	K562	K562- TAX	CEM- DNR	A549	HCT116	HCT116 p53				
IC ₅₀ (μΜ)	1,439	1,173	6,099	25,523	7,241	1,314	1,525				

Table 2. Results of anticancer activity of 2-(4-aminophenyl)-5,6,7,8-tetrahydro-3-I

The reduced derivatives 6 were also tested on antimicrobial activity. Activity of the best derivative is described in Table 3 in comparison to ciprofloxacin used as standard.

VZDĚLÁVÁNÍ

Compound	Zone of Growth Inhibition (mm)										* * * * * * * EVROPSKÁ UNIE	
			B. subtilis	S. aureus	M. luteus	A. baumannii	B. dolosa	P. aeru	ıginosa	E.	coli	
	Conc. So	Solvent	ATCC 6633	SG511	ATCC 10240	ATCC 17961	AU0018	K799/wt	K799/61	DC0	DC2	
	2mM	DMSO/ MeOH	17	18	23	14	17	0	h	h	23	
ciprofloxacin	5 μg/mL	H ₂ O	1.66ug/ml 20	19	0	17/20	100ug/ml 18	24	1.66ug/ml 23/28	16	20.5	لَّ OP Vzdělávání pro konkurenceschopnost
			Table 3. Res	ults of antimi	crobial activity	of 2-(4-methylp	henyl)-5,6,7,8	-tetrahydro-3-	HQ			INVESTICE DO ROZVOJE

Supported by grants: Research for this project was supported by the Ministry of Education, Youth and Sport of the Czech Republic (IGA_PrF_2015_007). The infrastructure of this project (Institute of Molecular and Translation)

Medicine) was supported by the National Program of sustainability (project LO1304). Biotrend CZ.1.07/2.2.00/28.0184